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Method of Least Squares (LS)
Definition (Method of Least Squares (LS))

Motivation: Develop a general method for optimally adjusting
parameters to model observed data

Solution: Set the sum of squared residuals (errors) as the
performance criteria and restrict the model to be linear

» The LS filtering method is a deterministic method
» Can be applied to linear and nonlinear systems

» LS corresponds to the ML criterion if the errors have a
normal distribution

Historical Note:

Gauss
» The method is related to linear regression developed LS

» Optimization procedure results in a LS best fit for a filter in 1795 at the
over the observed (training) samples age of 18
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Consider the linear transversal filter

Input

u(@) '_] u(i—1) u(i — M +2) ,_| u(i— M+ 1)
21 . cen ’ z!
w:)> “ ” @ °
Desired
Output response

(i) d(Z)
@~ —C @I/@?

Error
signal e(i)

and a fixed number of observed samples: i =1,2,---  N.
» M — the number of taps in the filter
» {z(i)} — input sequence
» {d(7)} — desired output sequence
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Objective: Set the tap weights to minimize the sum of squared errors

N
e(w)= > |e(@)|?
i=M
Let

w = [wo,wi, - wy_1]" [weight vector]
x(i) = [z(i),z(i—1),--,x(i—M+1)]T,M <i<N [obs. vect]

The error at time i is
e(i) = d(i) — w'x(i)

The full set of error values can be compiled into a vector
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Define the (N — M +1) x 1 vectors:

el = [e(M),e(M+1),---,e(N)] [error vector]
dff = [a(M),d(M+1),--- ,d(N)] [desired vector]

Denoting the filter output as d(i) and using vector form:

A

a = [AOM),d(M 1), d(N)
= [wHx(M),wix(M+1),--- ,wix(N)]

= wHx(M),x(M+1), - ,x(N)]
= wiAfl

where
A = [x(M),x(M+1),--- ,x(N)]

is the observation data matrix

s}

=
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A = [x(M),x(M+1),-- ,x(N)]

(M) x(M+1) z(N)
_ x(M—-1) (M) (N —1)
21 2(2) e a(N—M+1)

= A isa M x (N — M +1) rectangular toplitz matrix.

Combining all the above:

Filter output vector: d? =wh Al

Desired output vector:  d¥
Error vector: el =af —qf =af —wH Al

Note: All incorporate samples for M <i < N
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The sum of the squared estimate errors can now be written as

N
e(w) = 3 le(@)
=M
= €H6
= (A —wH AT (d - Aw)
= dfd—d?Aw—w'A"Td+wl A Aw

Minimizing with respect to w,

Oe(w)
ow

Setting (x) equal to zero gives the optimal LS weight w

= 2AHd+2A%Aw (%)

= AP Aw=AMd [Deterministic normal equation]
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Note: A is not generally square, and thus not invertible, but AHA s square
and generally invertible

APAw = Afd
>w = (ATA)'Afd

The deterministic normal equation can be rearranged as

ATAwW-Afld = 0
Af(Aw—-d) = 0 [or using €min =d — AW]
AHémm =0

Observation: The LS orthogonality principle states that the estimate error
€min is orthogonal to the row vectors of the data matrix A#
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Objective: Determine the minimum sum of squared errors (emin )

€min = €pin€min
= (df —wHAT)(d- AW)
dfd —wTATd —dP AW+ WwITAT AW

Utilizing the normal equations w7 A#d = w7 AH Aw

emin = dfd—wHARd —d? AW +wTAH AW
N————
wH AH A
= d"d-d"Aw

or using w = (AHA)~1AHd
emin = dPd—d7AATA)TTAHA (%)
Note that

N
dfd =" |d(i)]? [energy of desired response]
i=M
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Consider again the deterministic normal equation

ATAw = Afd
Note that
<1 (1)
ATA = (x4 1), x| < Y
xH(N)

N

= > x(
=M
= & [time averaged correlation matrix, size M x M |
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From ® =%, x(i)x" () it can be shown that:

1. ® is Hermitian
2. ® is nonnegative definite

To prove this, note that for any a

N
all®a = a’x(i)x(i)a

la’x(i)* > 0

3. From (1) and (2) we can prove that the eigenvalues of @ are real and
nonnegative
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The deterministic normal equation,
ATAw =A"d
also employs
d*(M)
ATd = (M), x(M+1), x(N)] d*(]\{“)
d*(N)

x(i)d" (i)

Il
L1

= [Time averaged cross-correlation vector, size M X 1]
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Thus the deterministic normal equation, AT Aw = AHd, reduces to

dw =10

® is usually positive definite (always positive semi-definite) = the solution is
well defined

A

w==a'4 [LS optimal weight vector]

Also, recall from (k) that enpi, can be expressed as

emin = dfd—dfA(ATA)"LAHd
Elaroai
o

= e;—6"®"19

where ¢ is the energy of desired signal
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Consider again the orthogonality principle

Recall that d = Aw. Thus
=wlA e .., = w0
= &Hemin 0

Result: The minimum estimation error vector, €niy, is orthogonal to the data
matrix AX and the LS estimate d
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Objective: Analyze the Least Squares solution in terms of

» Bias — it is the LS solution unbiased?

» BLUE —is the LS solution the Best Linear Unbiased Estimate?
Assumption: Take the true underlying system to be a linear

M-—1
di) = 3 wipa(i—k)+eoli)
k=0

= wix(i) +eo(i)

ep(7) is the unobservable measurement error

= eo(i) is white (uncorrelated) with zero mean and variance o2

Express the desired signal in vector form
d=Awy+e€p
where €} = [eo(M),eq(M +1),---, eg(N)]



IAWARE

The Least Square Method lﬁ‘ﬁmm‘“ FSAN/ELEGS815

Objective: Evaluate the bias of w

Recall that
w=(ATA)TAfd

Using d = Awg + € in the above

w = (APA)1AHd
= (ATA) A" (Awg+€)
= (AFA)TAH Awo+ (AFA) 1A ¢,
= wo+(ATA) ATy (%)
Note A is fixed. Thus taking the expectation of (x) yields
E{w} = wo+(AFA) AT E e}

Result: The LS estimate, w, is unbiased
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Objective: Evaluate the covariance of w
Note that from (x)

w = wo+(ATA)IAHg
=w-—wy = (AFA)1AH¢,
Thus
cov[w] = E{(W—wo)(W—wo)"}
= E{(ATA) AT gell A(AF A}
— & 'AT E{epell}AD T
21

= 20 =020t (X))

Result: The covariance of W is proportional to: (1) the variance of the
measurement noise and (2) the inverse of the time average correlation matrix



IAWARE

The Least Square Method lﬁ‘ﬁmm"“ FSAN/ELEGS815

Objective: Show that the LS estimate W is the Best Linear Unbiased Estimate
(BLUE)

» Consider any linear unbiased estimate w
» Note that w is a linear function of the observed date and can thus be

written as
w = Bd

where B is a M x (N — M + 1) matrix
Substituting d = Awq + € into the above,

w = BAwg+ Beg (*)
= E{W} BAW()
=BA =1 [since W unbiased]
Thus BA =T and (x) =

w = wo+ Beg
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Rearranging w = w + Bey,

W — W = BEO
= cov[W] = E{(W—wp)(Ww—wp)"}
= E{Beel'BY}

= BB (%)
Now define
U = B-(AFTA)IAH
=00 = B-& 'ATBf —A® Y
— BBY _BA® ' - 'AUBH 1 p AEAD !
S~~~ _—
I I o 19!
- BB ¢! @ liop!
= BB/ -9
= BBY—(A"A)"!
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Observation: The diagonal elements at UUH must be >0
Thus VO = BBH — (AHA)*1 =

diag[BB']
= diag[c*BB”|

> diag[(A"A)7]
> diaglo®(ATA)TT] (%)
But recall from (1) and (") that

cov[w] = o?(ATA)~? and cov[w] = o?BBH
Utilizing these results in (%) =

variance[w;| > variance[w;] i=1,2,--- M

Thus the weights in W have lower variance than any other linear estimates

Result: The LS estimate W is unbiased and has the smallest weight variance
= it is the Best Linear Unbiased Estimate (BLUE)
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Definition (Recursive Least Squares (RLS))

Motivation: LS requires solving

w = (A"A)'AMd

= &6
where
N N
&= x(i)x(i) and 0= x(i)d*(i)
=M =M

» (AT A)is M x M and inversion requires O(M?) multiplications and
additions

Approach: Suppose the LS optimal weights are known at time n, W(n). As
time evolves, find the new estimate, W(n+1), in terms of W(n).

» Employ the matrix inversion lemma to reduce the number of computations
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Let the observation sequence be z(1),z(2), -+ ,z(n)
= Assume z(l) =0 for 1 <0
Define the error as

where

z(i),z(i—1), -, x(i— M+1)"

w0<n>7w1(n>7 Tt 7wM—1<n)]T

[
[

= f(n,i) € (0,1] is a forgetting factor used in non—stationary statistics cases
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A commonly used forgetting factor is the exponential forgetting factor
Bn,i)=A"" i=12---,n, Xe€(0,1]

Thus,

The LS solution is given by the deterministic normal equation
®(n)w(n)=0(n)

where now
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The normal equation terms can be updated recursively,

d(n) = zn:l)\”ix(i)xH(i)

n—1

= A [Z A== (1) xH (7)

1=1

+x(n)xH (n)

®(n—1)
= A®(n—1)+x(n)x"(n)
Similarly

o(n) — f:)\”_ix(z’)d*(i)

- [Z A== () d* (i) | +x(n)d* (n)

= M(n—1)+x(n)d"(n)
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Aside: Matrix inversion lemma: If

A =B'+cp'lc”
~—~ —~— ~ ——
MxM MxM MxL LxL LxM

where A B, D are positive definite (non-singular), then
A'=B-BCD+CPBC|"!C"B
Apply the lemma to
®(n) = A®(n—1)+x(n)x(n)
Accordingly, set

A=®(n) [MxM] Bl =A®(n—1) [MxM]
C=x(n) [Mx]] D=1 1% 1]
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Utilizing
A =®(n) B !l=\®(n—1)
C=x(n) D=1
and
A"'=B-BCD+CPBC|"'C'B (%)
we get

D+CABC] ™ = [1+ A %A (n)®  (n—1)x(n)] 7"
which is a scalar. Thus evaluating (x) yields

&) — Ao l(n_ 1)_)\2<I>_1(n—1)x(n)xH(n)<I>_1(n—1)

14+ A" 1xH (n)® ' (n— 1)x(n)
To simplify the result, let P(n) =® '(n) and

B AP (n—1)x(n)
@ 1A IxH (n)P(n—1)x(n)

Gain vector
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1 X({n
Utilizing P(n) = ®~ ( ) and k(n) = 1+A/\1 Eén)[}()nﬁl))x(n)

A28 Hn—1)x(n)x2(n)® H(n—1)

@ 'n) = x'o n—-1)-
=Pn) = M'P(n—-1)-X"k(n)x(n)Pn-1) (%)
Also, the gain vector can be simplified as
AP(n—1)x(n)
1+ A" 1xH (n)P(n—1)x(n)
=k(n) = A 'P(n—1Dx(n)—A"k(n)x (n)P(n—1)x(n)
= MW 'P(n—1)=X"k(n)x" (n)P(n—1)]x(n)
=P(n) from (*)
a1

(n)x(n) ()

[multiply by denom.]

= Pn)x(n)=2®
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We must now derive an update for the tap weight vector. Recall,
w(n)=® 1 (n)8(n) =P(n)d(n)

Using the recursion 8(n) = A@(n— 1) +x(n)d*(n) in the above
W(n) = AP(n)8(n—1)+P(n)x(n)d*(n)  (xx%)

Using the update (%)

P(n)=A"'P(n—1)—A"'k(n)x"(n)P(n—1)
in the first P(n) term of (%)
Ww(n) = AP(n)8(n—1)+P(n)x(n)d*(n)

= MA'P(n—1) = X"k(n)x
+P(n)x(n)d*(n)

=
=
w
3

|
=
=
3

|
=
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w(n) = AMAP(n—1)=A"k(n)x" (n)P(n—1))0(n—1)

+P(n)x(n)d*(n)

= Pn—1)0(n—1)—k(n)xZn)Pn—-10(n—-1)

W(n—1) W(n—1)

+P(n)x(n)d*(n)

= Ww(n—1)—kn)xT(n)W(n—-1)+ P(n)x(n) d*(n)

—K(n) from (++)
= W(n—1)~k(n)x"(n)w(n—1)—d*(n)]
— W(n—1)+k(n)a*(n)
where a(n) = d(n) — W (n—1)x(n)

Observation: Difference between e(n) and a(n):
e(n) = d(n) — W (n)x(n) = a posteriori error
a(n) =d(n) —wH(n—1)x(n) = a priori error
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RLS Algorithm Summary

1. Given a new sample z(n), update the gain vector

B AP (n—1)x(n)
(") = T =T ()P (0 — 1)x(n)

4. Update inverse correlation matrix
P(n) =A"1P(n—1)—A"'k(n)x" (n)P(n—1)

Initial Conditions: w(0) =0 and ®(0) = dI, where ¢ is a small positive
constant, § =~ 0.0102.
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Input vector 4
AH(—
u(m) Transversal filter W= 1uin) Output
win-1}
Error -
Adgptlve &n)
weight-control
mechanism
+
Desired
response
(@ din)

Algorithm Comparison: RLS and LMS algorithm terms:

Entity RLS LMS
Error a(n) =d(n)—w" (n=Dx(n) e(n) =d(n) —-Ww" (n)x(n)
(@ priori error) (@ posteriari error)
Weight | () =d(n-1) +k(ma“(n) | win+D=w(n)+x(n)en)
Update
Gain of AP(n-1)
error update %H A" (M)P(n—1)x(n) E((n) (o)
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Objective: Compare the complexities (number of additions and multiplies) for
the LMS, LS, and RLS algorithms.

» Assume the data is real and the filter is of size M

Case 1 — The LMS algorithm: Algorithm stages:
1. d(n) = w7 (n)x(n)
2. e(n) =d(n)—d(n)
3. w(n+1)=w(n)+ pux(n)e(n)

Complexity
Stage \ O« \ O+
(1) M M-1
2) 0 1
(3) M+1 M
ot s | 000 1) | 01210
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Case 2 — The LS algorithm: Algorithm solves
w(n)=® *(n)8(n)
and has stages:
1. ®(n+1)=®(n)+x(n+1)x7(n+1)

2. 0(n+1)=0(n)+x(n+1)d(n+1)
3. wn+1)=® '(n+1)0(n+1)

Complexity
Stage \ O« \ O+
(1) M ik
(2) M M
(3) M3+ M? M3+ M(M —1)
o |23 [ 0,00 2012
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Case 3 — The RLS algorithm: Algorithm has stages (assuming A = 1):

1. k(n) = 1+xT (n)P(n—1)x(n)

AP (n—1)x(n)

b

2. a(n)=d(n)—w(n—1)x(n)
3. w(n)=w(n—1)+k(n)a(n)
4. P(n) =P(n—1)—k(n)x'(n)P(n—1)

Note: The operation x” (n)P(n — 1) is repeated (but only performed once).
Corresponding steps are underlined in the chart.

FSAN/ELEG815

Complexity
Stage \ O« \ O4
(1) numerator M? M(M—-1)
(1) denominator M2+ M M(M-1)+M
(1) division M
(2) M M
(3) M M
(4) MZ+ M? M(M —1) + M?
Total complexity 0. (3M24+4M) | O, (3M2+ M)

per iteration
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Objective: Analyze the RLS algorithm in terms of
» Bias
» Convergence in the mean; Convergence in the mean square
» Learning curve decay rate
Assumptions:
1. The desired signal is formed by the regression model

d(n) = wilx(n) +ep(n)

where eg(n) is white with variance 2.

2. A=1land n> M.
Then

where
n

B(n) = > x(i)x" (i) and B(n) = x(i)d* (i)
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Substituting d*(n) = x (n)wq +¢f(n) into 8(n)

x (1) [x" (i)wo + €5 (1))

M=

0(n) = 1

~.
I

I

s,
I
—

x(z‘)xH@)wwixu)ez‘)(i)

I
©

mw+§nmw>
Thus
w(n) = & '(n)d(n)

= & '(n)[®(n)wo+ zn:lx(z)ef;(z)]

= Wt &) X)) (+)

=1
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Note that F{A} = E{E{A|B}}. Thus
Ww(n) = w0+q>—1<n)_§";1x(¢)eg(i)

= E{w(n)} = Wo—i—E{E{q)_l(n)ix(i)eé(i)]w(i),i:1,2,~~~,n}}

= wo+E{®"’ Z (i) E{ep(i)}} =wo

The above follows from the fact that ®(n) and ¢{j(¢) are independent.

Why? ey(7) is independent of all observations and the x(i) terms are given,
uniquely defining ®(n). = independence of ®(n) and ef(7).

Result: The RLS algorithm is unbiased and convergent in the mean for n > M.

Question: How does this compare to the LMS algorithm?
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Next, consider the convergence in the mean square. Recall (%)
W(n) =wo+ @ (n) 3 x(i)eg (i)
i=1
which gives
€(n) = ¥(n) = wo = & (m) - x()ei (1)
Thus the weight error correlation matrix is

K(n) = BE{e(n)e’ (n)}

= E{2"'(n) (Xn: > X(i)eé(i)eo(j)xH(j)) @' (n)}

i=1j=1
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Again using E{A} = E{E{A|B}} yields

K(n) = sz ) E{ef(i)ea(i)} 7 (7) | @7 (n)
== 026(i—j)

: ZE{ fu)o)

= 2E{‘I> (n)}
Note: ® *(n) has a Wishart distribution, the expectation of which is

_ 1
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Using K(n) = R~! and the trace

_o®
n—M-—1

E{lle(n)||*}

(el (n)e(n)}
= E{trace[e” (n)e

= FE{tracele(n)e

= traceE{e(n)e’(n)}
= trace[K(n)]

2

_ g -1
= n_M_ltrace[R ]

0.2 M

- Ty as M4l
a1y, MM

Results:
> The weight vector MSE is initially proportional to >, A

» The weight vector converges linearly in the mean squared sense
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Objective: Evaluate the RLS (error) learning curve
Recall the a priori estimation error

an) = dn)—wi(n-1x(n)
= d(n)—do(n)+do(n) —
= eo(n) +wilx(n) —w(n—1)x(n)

Now consider the MSE of a(n)
Ja(n) = Efla(n)]*}
= E{leg(n) —x" (n)e(n—1)]eo(n) — € (n —1)x(n)]}
= B{leo(n)’} — B{x" (n)e(n —1)eo(n)}
—E{(n—1)x(n)ef(n)} + E{x" (n)e(n — 1) (n —1)x(n)}

To analyze J,(n), consider each term individually
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Ja(n) = Bleo(n)|*} - B{x" (n)e(n —1)eo(n)}
—E{ef(n—1)x(n)ej(n)} + E{xT(n)e(n—1)e" (n—1)x(n)}
Term: E{|eg(n)|?}.

Clearly,
E{leo(n)]*} = 0?

Term: E{e!(n—1)x(n)ej(n)}.
By the independence theorem, €(n — 1) is independent of x(n) and eg(n).
Thus,

E{"(n—1)x(n)eg(n)} = E{e"(n—1)}E{x(n)ej(n)}
= 0

where the final result is due to the orthogonality principle.

Term: E{xf(n)e(n—1)ep(n)} — 0 by similar arguments
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Ja(n) = E{leo(n)} — E{x" (n)e(n—1)eo(n)}
—E{ef (n— )x(n)eg(n)} + E{x"(n)e(n—1)e (n—1)x(n)}

Term: E{x(n)e(n—1)e’(n—1)x(n)}

E{x"(n)e(n—1)e (n—1)x(n)} = E{trace[x" (n)e(n —1)ef (n — 1)x(n)]}
— FE{trace[x(n)x (n)e(n—1)e (n—1)]}

Invoking the independence theorem
E{x(n)e(n—1)e (n—1)x(n)}

= trace[ E{x(n)x" (n)} E{e(n —1)e" (n —1)}]
= trace[RK(n —1)]
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Utilizing K(n—1) = n_‘]’\j_zR_l and substituting back each of the
components

Jo(n) = o? +trace[RK (n — 1)]
Mo?
_ 2
=0"+ — 5 " >M+1
Results:

» The ensemble average learning curve of the RLS converges in about 2M
iterations, which is typically an order of magnitude faster than the LMS

» lim, o0 Jo(n) = 02 thus there is no excess MSE

» Convergence of the RLS algorithm is independent of the eigenvalues of

®(n)
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Example
Consider again the channel equalization problem

] ooy |
Random-noise
generator (1)

Adaptive -
Channel transversal e
equalizer -

Random-noise
generator (2)

[14cos(2(n—1))] n=1,2,3
otherwise

(@R NI[E

where
= {

» As before an 11-tap filter is used
» The SNR is 30dB and W is varied to control the eigenvalue spread
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Ensemble-averaged squared error
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Observations:
» The RLS algorithm converges in about 20 iterations (twice the number of
filter taps)
» The convergence (rate) is insensitive to the eigenvalue spread
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Ensemble-averaged squared error
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Observations:
» The RLS algorithm converges faster than the LMS algorithm
» The RLS algorithm has lower steady state error than the LMS algorithm
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