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Method of Least Squares (LS)
Definition (Method of Least Squares (LS))
Motivation: Develop a general method for optimally adjusting
parameters to model observed data
Solution: Set the sum of squared residuals (errors) as the
performance criteria and restrict the model to be linear

I The LS filtering method is a deterministic method
I Can be applied to linear and nonlinear systems
I LS corresponds to the ML criterion if the errors have a

normal distribution
I The method is related to linear regression
I Optimization procedure results in a LS best fit for a filter

over the observed (training) samples

Historical Note:
Gauss
developed LS
in 1795 at the
age of 18



2/46

The Least Square Method FSAN/ELEG815

Consider the linear transversal filter

and a fixed number of observed samples: i= 1,2, · · · ,N.
I M – the number of taps in the filter
I {x(i)} – input sequence
I {d(i)} – desired output sequence
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Objective: Set the tap weights to minimize the sum of squared errors

ε(w) =
N∑
i=M
|e(i)|2

Let

w = [w0,w1, · · · ,wM−1]T [weight vector]
x(i) = [x(i),x(i−1), · · · ,x(i−M + 1)]T ,M ≤ i≤N [obs. vect.]

The error at time i is
e(i) = d(i)−wHx(i)

The full set of error values can be compiled into a vector
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Define the (N −M + 1)×1 vectors:

εεεH = [e(M), e(M + 1), · · · , e(N)] [error vector]
dH = [d(M),d(M + 1), · · · ,d(N)] [desired vector]

Denoting the filter output as d̂(i) and using vector form:

d̂H = [d̂(M), d̂(M + 1), · · · , d̂(N)]
= [wHx(M),wHx(M + 1), · · · ,wHx(N)]
= wH [x(M),x(M + 1), · · · ,x(N)]
= wHAH

where
AH = [x(M),x(M + 1), · · · ,x(N)]

is the observation data matrix
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Expanding the data matrix

AH = [x(M),x(M + 1), · · · ,x(N)]

=


x(M) x(M + 1) · · · x(N)

x(M −1) x(M) · · · x(N −1)
... ... . . . ...

x(1) x(2) · · · x(N −M + 1)



⇒ AH is a M × (N −M + 1) rectangular toplitz matrix.
Combining all the above:

Filter output vector: d̂H = wHAH

Desired output vector: dH

Error vector: εεεH = dH − d̂H = dH −wHAH

Note: All incorporate samples for M ≤ i≤N
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The sum of the squared estimate errors can now be written as

ε(w) =
N∑
i=M
|e(i)|2

= εεεHεεε

= (dH −wHAH)(d−Aw)
= dHd−dHAw−wHAHd + wHAHAw

Minimizing with respect to w,

∂ε(w)
∂w

=−2AHd + 2AHAw (∗)

Setting (∗) equal to zero gives the optimal LS weight ŵ

⇒AHAŵ = AHd [Deterministic normal equation]
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Note: A is not generally square, and thus not invertible, but AHA is square
and generally invertible

AHAŵ = AHd
⇒ ŵ = (AHA)−1AHd

The deterministic normal equation can be rearranged as

AHAŵ−AHd = 0
AH(Aŵ−d) = 0 [or using εεεmin = d−Aŵ]

AHεεεmin = 0

Observation: The LS orthogonality principle states that the estimate error
εεεmin is orthogonal to the row vectors of the data matrix AH
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Objective: Determine the minimum sum of squared errors (emin)
emin = εεεHminεεεmin

= (dH − ŵHAH)(d−Aŵ)
= dHd− ŵHAHd−dHAŵ + ŵHAHAŵ

Utilizing the normal equations ŵHAHd = ŵHAHAŵ
emin = dHd− ŵHAHd︸ ︷︷ ︸

ŵHAHAŵ

−dHAŵ + ŵHAHAŵ

= dHd−dHAŵ
or using ŵ = (AHA)−1AHd

emin = dHd−dHA(AHA)−1AHd (∗)
Note that

dHd =
N∑
i=M
|d(i)|2 [energy of desired response]
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Consider again the deterministic normal equation

AHAŵ = AHd

Note that

AHA = [x(M),x(M + 1), · · · ,x(N)]


xH(M)

xH(M + 1)
...

xH(N)


=

N∑
i=M

x(i)xH(i)

= ΦΦΦ [time averaged correlation matrix, size M ×M ]
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From ΦΦΦ = ∑N
i=M x(i)xH(i) it can be shown that:

1. ΦΦΦ is Hermitian
2. ΦΦΦ is nonnegative definite

To prove this, note that for any a

aHΦΦΦa =
N∑
i=M

aHx(i)xH(i)a

=
N∑
i=M

[aHx(i)][aHx(i)]H

=
N∑
i=M
|aHx(i)|2 ≥ 0

3. From (1) and (2) we can prove that the eigenvalues of ΦΦΦ are real and
nonnegative



11/46

The Least Square Method FSAN/ELEG815

The deterministic normal equation,

AHAŵ = AHd

also employs

AHd = [x(M),x(M + 1), · · · ,x(N)]


d∗(M)

d∗(M + 1)
...

d∗(N)


=

N∑
i=M

x(i)d∗(i)

= θθθ [Time averaged cross-correlation vector, size M ×1]
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Thus the deterministic normal equation, AHAŵ = AHd, reduces to

ΦΦΦŵ = θθθ

ΦΦΦ is usually positive definite (always positive semi-definite) ⇒ the solution is
well defined

ŵ = ΦΦΦ−1θθθ [LS optimal weight vector]
Also, recall from (∗) that emin can be expressed as

emin = dHd−dHA︸ ︷︷ ︸
θθθH

(AHA)−1︸ ︷︷ ︸
ΦΦΦ−1

AHd︸ ︷︷ ︸
θθθ

= ed− θθθHΦΦΦ−1θθθ

where ed is the energy of desired signal
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Consider again the orthogonality principle

AHεεεmin = 0

Recall that d̂ = Aŵ. Thus

AHεεεmin = 0
⇒ ŵHAHεεεmin = ŵH0
⇒ d̂Hεεεmin = 0

Result: The minimum estimation error vector, εεεmin, is orthogonal to the data
matrix AH and the LS estimate d̂
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Objective: Analyze the Least Squares solution in terms of
I Bias – it is the LS solution unbiased?
I BLUE – is the LS solution the Best Linear Unbiased Estimate?

Assumption: Take the true underlying system to be a linear

d(i) =
M−1∑
k=0

w∗0kx(i−k) + e0(i)

= wH
0 x(i) + e0(i)

e0(i) is the unobservable measurement error
⇒ e0(i) is white (uncorrelated) with zero mean and variance σ2

Express the desired signal in vector form

d = Aw0 + εεε0

where εεεH0 = [e0(M), e0(M + 1), · · · , e0(N)]
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Objective: Evaluate the bias of ŵ
Recall that

ŵ = (AHA)−1AHd
Using d = Aw0 + εεε0 in the above

ŵ = (AHA)−1AHd
= (AHA)−1AH(Aw0 + εεε0)
= (AHA)−1AHAw0 + (AHA)−1AHεεε0

= w0 + (AHA)−1AHεεε0 (∗)

Note A is fixed. Thus taking the expectation of (∗) yields

E{ŵ} = w0 + (AHA)−1AHE{εεε0}
= w0

Result: The LS estimate, ŵ, is unbiased
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Objective: Evaluate the covariance of ŵ

Note that from (∗)

ŵ = w0 + (AHA)−1AHεεε0

⇒ ŵ−w0 = (AHA)−1AHεεε0

Thus

cov[ŵ] = E{(ŵ−w0)(ŵ−w0)H}
= E{(AHA)−1AHεεε0εεε

H
0 A(AHA)−1}

= ΦΦΦ−1AHE{εεε0εεεH0 }︸ ︷︷ ︸
σ2I

AΦΦΦ−1

= σ2ΦΦΦ−1ΦΦΦΦΦΦ−1 = σ2ΦΦΦ−1 (z1)

Result: The covariance of ŵ is proportional to: (1) the variance of the
measurement noise and (2) the inverse of the time average correlation matrix
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Objective: Show that the LS estimate ŵ is the Best Linear Unbiased Estimate
(BLUE)

I Consider any linear unbiased estimate w̃
I Note that w̃ is a linear function of the observed date and can thus be

written as
w̃ = Bd

where B is a M × (N −M + 1) matrix
Substituting d = Aw0 + εεε0 into the above,

w̃ = BAw0 + Bεεε0 (∗)
⇒ E{w̃} = BAw0

⇒BA = I [since w̃ unbiased]

Thus BA = I and (∗) ⇒
w̃ = w0 + Bεεε0
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Rearranging w̃ = w0 + Bεεε0,

w̃−w0 = Bεεε0
⇒ cov[w̃] = E{(w̃−w0)(w̃−w0)H}

= E{Bεεε0εεεH0 BH}
= σ2BBH (z2)

Now define

Ψ = B− (AHA)−1AH

⇒ΨΨH = [B−ΦΦΦ−1AH ][BH −AΦΦΦ−1]
= BBH −BA︸︷︷︸

I
ΦΦΦ−1−ΦΦΦ−1 AHBH︸ ︷︷ ︸

I
+ΦΦΦ−1AHAΦΦΦ−1︸ ︷︷ ︸

ΦΦΦ−1ΦΦΦΦΦΦ−1

= BBH −ΦΦΦ−1−ΦΦΦ−1 + ΦΦΦ−1

= BBH −ΦΦΦ−1

= BBH − (AHA)−1
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Observation: The diagonal elements at ΨΨH must be ≥ 0
Thus ΨΨH = BBH − (AHA)−1 ⇒

diag[BBH ] ≥ diag[(AHA)−1]
⇒ diag[σ2BBH ] ≥ diag[σ2(AHA)−1] (∗)

But recall from (z1) and (z2) that

cov[ŵ] = σ2(AHA)−1 and cov[w̃] = σ2BBH

Utilizing these results in (∗) ⇒

variance[w̃i]≥ variance[ŵi] i= 1,2, · · · ,M

Thus the weights in ŵ have lower variance than any other linear estimates
Result: The LS estimate ŵ is unbiased and has the smallest weight variance
⇒ it is the Best Linear Unbiased Estimate (BLUE)
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Definition (Recursive Least Squares (RLS))

Motivation: LS requires solving

ŵ = (AHA)−1AHd
= ΦΦΦ−1θθθ

where
ΦΦΦ =

N∑
i=M

x(i)xH(i) and θθθ =
N∑
i=M

x(i)d∗(i)

I (AHA) is M ×M and inversion requires O(M3) multiplications and
additions

Approach: Suppose the LS optimal weights are known at time n, ŵ(n). As
time evolves, find the new estimate, ŵ(n+ 1), in terms of ŵ(n).
I Employ the matrix inversion lemma to reduce the number of computations
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Let the observation sequence be x(1),x(2), · · · ,x(n)
⇒ Assume x(l) = 0 for l ≤ 0
Define the error as

ε(n) =
n∑
i=1

β(n,i)|e(i)|2

where

e(i) = d(i)−wH(n)x(i)
x(i) = [x(i),x(i−1), · · · ,x(i−M + 1)]T

w(n) = [w0(n),w1(n), · · · ,wM−1(n)]T

⇒ β(n,i) ∈ (0,1] is a forgetting factor used in non–stationary statistics cases
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A commonly used forgetting factor is the exponential forgetting factor

β(n,i) = λn−i i= 1,2, · · · ,n, λ ∈ (0,1]

Thus,
ε(n) =

n∑
i=1

λn−i|e(i)|2

The LS solution is given by the deterministic normal equation

ΦΦΦ(n)ŵ(n) = θθθ(n)

where now
ΦΦΦ(n) =

n∑
i=1

λn−ix(i)xH(i)

θθθ(n) =
n∑
i=1

λn−ix(i)d∗(i)
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The normal equation terms can be updated recursively,

ΦΦΦ(n) =
n∑
i=1

λn−ix(i)xH(i)

= λ

n−1∑
i=1

λ(n−1)−ix(i)xH(i)


︸ ︷︷ ︸
ΦΦΦ(n−1)

+x(n)xH(n)

= λΦΦΦ(n−1) + x(n)xH(n)
Similarly

θθθ(n) =
n∑
i=1

λn−ix(i)d∗(i)

= λ

n−1∑
i=1

λ(n−1)−ix(i)d∗(i)
 + x(n)d∗(n)

= λθθθ(n−1) + x(n)d∗(n)
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Aside: Matrix inversion lemma: If

A︸︷︷︸
M×M

= B−1︸ ︷︷ ︸
M×M

+ C︸︷︷︸
M×L

D−1︸ ︷︷ ︸
L×L

CH︸︷︷︸
L×M

where A,B,D are positive definite (non-singular), then

A−1 = B−BC[D + CHBC]−1CHB

Apply the lemma to

ΦΦΦ(n) = λΦΦΦ(n−1) + x(n)xH(n)

Accordingly, set

A = ΦΦΦ(n) [M ×M ] B−1 = λΦΦΦ(n−1) [M ×M ]
C = x(n) [M ×1] D = 1 [1×1]
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Utilizing
A = ΦΦΦ(n) B−1 = λΦΦΦ(n−1)
C = x(n) D = 1

and
A−1 = B−BC[D + CHBC]−1CHB (∗)

we get
[D + CHBC]−1 = [1 +λ−1xH(n)ΦΦΦ−1(n−1)x(n)]−1

which is a scalar. Thus evaluating (∗) yields

ΦΦΦ−1(n) = λ−1ΦΦΦ−1(n−1)− λ
−2ΦΦΦ−1(n−1)x(n)xH(n)ΦΦΦ−1(n−1)

1 +λ−1xH(n)ΦΦΦ−1(n−1)x(n)

To simplify the result, let P(n) = ΦΦΦ−1(n) and

k(n)︸ ︷︷ ︸
Gain vector

= λ−1P(n−1)x(n)
1 +λ−1xH(n)P(n−1)x(n)
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Utilizing P(n) = ΦΦΦ−1(n) and k(n) = λ−1P(n−1)x(n)
1+λ−1xH(n)P(n−1)x(n)

ΦΦΦ−1(n) = λ−1ΦΦΦ−1(n−1)− λ
−2ΦΦΦ−1(n−1)x(n)xH(n)ΦΦΦ−1(n−1)

1 +λ−1xH(n)ΦΦΦ−1(n−1)x(n)
⇒P(n) = λ−1P(n−1)−λ−1k(n)xH(n)P(n−1) (∗)

Also, the gain vector can be simplified as

k(n) = λ−1P(n−1)x(n)
1 +λ−1xH(n)P(n−1)x(n) [multiply by denom.]

⇒ k(n) = λ−1P(n−1)x(n)−λ−1k(n)xH(n)P(n−1)x(n)
= [λ−1P(n−1)−λ−1k(n)xH(n)P(n−1)]︸ ︷︷ ︸

=P(n) from (∗)

x(n)

= P(n)x(n) = ΦΦΦ−1(n)x(n) (∗∗)



27/46

The Least Square Method FSAN/ELEG815

We must now derive an update for the tap weight vector. Recall,

ŵ(n) = ΦΦΦ−1(n)θθθ(n) = P(n)θθθ(n)

Using the recursion θθθ(n) = λθθθ(n−1) + x(n)d∗(n) in the above

ŵ(n) = λP(n)θθθ(n−1) + P(n)x(n)d∗(n) (∗∗∗)
Using the update (∗)

P(n) = λ−1P(n−1)−λ−1k(n)xH(n)P(n−1)

in the first P(n) term of (∗∗∗)

ŵ(n) = λP(n)θθθ(n−1) + P(n)x(n)d∗(n)
= λ[λ−1P(n−1)−λ−1k(n)xH(n)P(n−1)]θθθ(n−1)

+P(n)x(n)d∗(n)
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*

ŵ(n) = λ[λ−1P(n−1)−λ−1k(n)xH(n)P(n−1)]θθθ(n−1)
+P(n)x(n)d∗(n)

= P(n−1)θθθ(n−1)︸ ︷︷ ︸
ŵ(n−1)

−k(n)xH(n)P(n−1)θθθ(n−1)︸ ︷︷ ︸
ŵ(n−1)

+P(n)x(n)d∗(n)
= ŵ(n−1)−k(n)xH(n)ŵ(n−1) + P(n)x(n)︸ ︷︷ ︸

=k(n) from (∗∗)

d∗(n)

= ŵ(n−1)−k(n)[xH(n)ŵ(n−1)−d∗(n)]
= ŵ(n−1) + k(n)α∗(n)

where α(n) = d(n)− ŵH(n−1)x(n)
Observation: Difference between e(n) and α(n):

e(n) = d(n)− ŵH(n)x(n)⇒ a posteriori error
α(n) = d(n)− ŵH(n−1)x(n)⇒ a priori error
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RLS Algorithm Summary

1. Given a new sample x(n), update the gain vector

k(n) = λ−1P(n−1)x(n)
1 +λ−1xH(n)P(n−1)x(n)

2. Update the innovation: α(n) = d(n)− ŵH(n−1)x(n)
3. Update the tap weight vector: ŵ(n) = ŵ(n−1) + k(n)α∗(n)
4. Update inverse correlation matrix

P(n) = λ−1P(n−1)−λ−1k(n)xH(n)P(n−1)

Initial Conditions: ŵ(0) = 0 and ΦΦΦ(0) = δI, where δ is a small positive
constant, δ ≈ 0.01σ2

x.
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Objective: Compare the complexities (number of additions and multiplies) for
the LMS, LS, and RLS algorithms.
I Assume the data is real and the filter is of size M

Case 1 – The LMS algorithm: Algorithm stages:
1. d̂(n) = wT (n)x(n)
2. e(n) = d(n)− d̂(n)
3. w(n+ 1) = w(n) +µx(n)e(n)

Complexity
Stage O× O+
(1) M M −1
(2) 0 1
(3) M + 1 M

Total complexity
O×(2M + 1) O+(2M)per iteration
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Case 2 – The LS algorithm: Algorithm solves

ŵ(n) = ΦΦΦ−1(n)θθθ(n)

and has stages:
1. ΦΦΦ(n+ 1) = ΦΦΦ(n) + x(n+ 1)xH(n+ 1)
2. θθθ(n+ 1) = θθθ(n) + x(n+ 1)d(n+ 1)
3. ŵ(n+ 1) = ΦΦΦ−1(n+ 1)θθθ(n+ 1)

Complexity
Stage O× O+
(1) M2 M2

(2) M M
(3) M3 +M2 M3 +M(M −1)

Total complexity
O×(M3 + 2M2 +M) O+(M3 + 2M2)per iteration
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Case 3 – The RLS algorithm: Algorithm has stages (assuming λ= 1):
1. k(n) = λ−1P(n−1)x(n)

1+xT (n)P(n−1)x(n)
2. α(n) = d(n)− ŵT (n−1)x(n)
3. ŵ(n) = ŵ(n−1) + k(n)α(n)
4. P(n) = P(n−1)−k(n)xT (n)P(n−1)

Note: The operation xT (n)P(n−1) is repeated (but only performed once).
Corresponding steps are underlined in the chart.

Complexity
Stage O× O+

(1) numerator M2 M(M −1)
(1) denominator M2 +M M(M −1)+M

(1) division M
(2) M M
(3) M M
(4) M2 +M2 M(M −1)+M2

Total complexity
O×(3M2 +4M) O+(3M2 +M)per iteration
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Objective: Analyze the RLS algorithm in terms of
I Bias
I Convergence in the mean; Convergence in the mean square
I Learning curve decay rate

Assumptions:
1. The desired signal is formed by the regression model

d(n) = wH
0 x(n) + e0(n)

where e0(n) is white with variance σ2.
2. λ= 1 and n≥M .

Then
ŵ(n) = ΦΦΦ−1(n)θθθ(n)

where
ΦΦΦ(n) =

n∑
i=1

x(i)xH(i) and θθθ(n) =
n∑
i=1

x(i)d∗(i)
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Substituting d∗(n) = xH(n)w0 + e∗0(n) into θθθ(n)

θθθ(n) =
n∑
i=1

x(i)[xH(i)w0 + e∗0(i)]

=
n∑
i=1

x(i)xH(i)w0 +
n∑
i=1

x(i)e∗0(i)

= ΦΦΦ(n)w0 +
n∑
i=1

x(i)e∗0(i)

Thus
ŵ(n) = ΦΦΦ−1(n)θθθ(n)

= ΦΦΦ−1(n)[ΦΦΦ(n)w0 +
n∑
i=1

x(i)e∗0(i)]

= w0 + ΦΦΦ−1(n)
n∑
i=1

x(i)e∗0(i) (∗)
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Note that E{A}= E{E{A|B}}. Thus

ŵ(n) = w0 + ΦΦΦ−1(n)
n∑
i=1

x(i)e∗0(i)

⇒ E{ŵ(n)} = w0 +E{E{ΦΦΦ−1(n)
n∑
i=1

x(i)e∗0(i)|x(i), i= 1,2, · · · ,n}}

= w0 +E{ΦΦΦ−1(n)
n∑
i=1

x(i)E{e∗0(i)}}= w0

The above follows from the fact that ΦΦΦ(n) and e∗0(i) are independent.
Why? e0(i) is independent of all observations and the x(i) terms are given,
uniquely defining ΦΦΦ(n). ⇒ independence of ΦΦΦ(n) and e∗0(i).
Result: The RLS algorithm is unbiased and convergent in the mean for n≥M .
Question: How does this compare to the LMS algorithm?
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Next, consider the convergence in the mean square. Recall (∗)

ŵ(n) = w0 + ΦΦΦ−1(n)
n∑
i=1

x(i)e∗0(i)

which gives
εεε(n) = ŵ(n)−w0 = ΦΦΦ−1(n)

n∑
i=1

x(i)e∗0(i)

Thus the weight error correlation matrix is

K(n) = E{εεε(n)εεεH(n)}

= E{ΦΦΦ−1(n)
 n∑
i=1

n∑
j=1

x(i)e∗0(i)e0(j)xH(j)
ΦΦΦ−1(n)}
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Again using E{A}= E{E{A|B}} yields

K(n) = E

ΦΦΦ−1(n)

 n∑
i=1

n∑
j=1

x(i)E{e∗0(i)e0(j)}︸ ︷︷ ︸
σ2δ(i−j)

xH(j)

ΦΦΦ−1(n)


= σ2E

ΦΦΦ−1(n)
 n∑
i=1

x(i)xH(i)
ΦΦΦ−1(n)


= σ2E{ΦΦΦ−1(n)ΦΦΦ(n)ΦΦΦ−1(n)}
= σ2E{ΦΦΦ−1(n)}

Note: ΦΦΦ−1(n) has a Wishart distribution, the expectation of which is

E{ΦΦΦ−1(n)}= 1
n−M −1R−1 n >M + 1
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Using K(n) = σ2

n−M−1R−1 and the trace

E{||εεε(n)||2} = E{εεεH(n)εεε(n)}
= E{trace[εεεH(n)εεε(n)]}
= E{trace[εεε(n)εεεH(n)]}
= traceE{εεε(n)εεεH(n)}
= trace[K(n)]

= σ2

n−M −1trace[R−1]

= σ2

n−M −1
M∑
i=1

1
λi

n >M + 1

Results:
I The weight vector MSE is initially proportional to ∑M

i=1
1
λi

I The weight vector converges linearly in the mean squared sense
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Objective: Evaluate the RLS (error) learning curve
Recall the a priori estimation error

α(n) = d(n)− ŵH(n−1)x(n)
= d(n)− d̂0(n) + d̂0(n)− ŵH(n−1)x(n)
= e0(n) + wH

0 x(n)− ŵH(n−1)x(n)
= e0(n)− εεεH(n−1)x(n)

Now consider the MSE of α(n)

Jα(n) = E{|α(n)|2}
= E{[e∗0(n)−xH(n)εεε(n−1)][e0(n)− εεεH(n−1)x(n)]}
= E{|e0(n)|2}−E{xH(n)εεε(n−1)e0(n)}
−E{εH(n−1)x(n)e∗0(n)}+E{xH(n)εεε(n−1)εεεH(n−1)x(n)}

To analyze Jα(n), consider each term individually
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Jα(n) = E{|e0(n)|2}−E{xH(n)εεε(n−1)e0(n)}
−E{εH(n−1)x(n)e∗0(n)}+E{xH(n)εεε(n−1)εεεH(n−1)x(n)}

Term: E{|e0(n)|2}.
Clearly,

E{|e0(n)|2}= σ2

Term: E{εH(n−1)x(n)e∗0(n)}.
By the independence theorem, εεε(n−1) is independent of x(n) and e0(n).
Thus,

E{εH(n−1)x(n)e∗0(n)} = E{εH(n−1)}E{x(n)e∗0(n)}
= 0

where the final result is due to the orthogonality principle.
Term: E{xH(n)εεε(n−1)e0(n)} → 0 by similar arguments
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Jα(n) = E{|e0(n)|2}−E{xH(n)εεε(n−1)e0(n)}
−E{εH(n−1)x(n)e∗0(n)}+E{xH(n)εεε(n−1)εεεH(n−1)x(n)}

Term: E{xH(n)εεε(n−1)εεεH(n−1)x(n)}

E{xH(n)εεε(n−1)εεεH(n−1)x(n)}= E{trace[xH(n)εεε(n−1)εεεH(n−1)x(n)]}
= E{trace[x(n)xH(n)εεε(n−1)εεεH(n−1)]}

Invoking the independence theorem

E{xH(n)εεε(n−1)εεεH(n−1)x(n)}
= trace[E{x(n)xH(n)}E{εεε(n−1)εεεH(n−1)}]
= trace[RK(n−1)]
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Utilizing K(n−1) = σ2

n−M−2R−1 and substituting back each of the
components

Jα(n) = σ2 + trace[RK(n−1)]

= σ2 + Mσ2

n−M −2 n >M + 1

Results:
I The ensemble average learning curve of the RLS converges in about 2M

iterations, which is typically an order of magnitude faster than the LMS
I limn→∞Jα(n) = σ2 thus there is no excess MSE
I Convergence of the RLS algorithm is independent of the eigenvalues of

ΦΦΦ(n)
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Example
Consider again the channel equalization problem

where
hn =

{ 1
2 [1 + cos(2π

W (n−1))] n= 1,2,3
0 otherwise

I As before an 11-tap filter is used
I The SNR is 30dB and W is varied to control the eigenvalue spread
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Observations:
I The RLS algorithm converges in about 20 iterations (twice the number of

filter taps)
I The convergence (rate) is insensitive to the eigenvalue spread
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Observations:
I The RLS algorithm converges faster than the LMS algorithm
I The RLS algorithm has lower steady state error than the LMS algorithm
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